
Package: duckdbfs (via r-universe)
October 28, 2024

Title High Performance Remote File System, Database and 'Geospatial'
Access Using 'duckdb'

Version 0.0.7

Description Provides friendly wrappers for creating 'duckdb'-backed
connections to tabular datasets ('csv', parquet, etc) on local
or remote file systems. This mimics the behaviour of
``open_dataset'' in the 'arrow' package, but in addition to 'S3'
file system also generalizes to any list of 'http' URLs.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

URL https://github.com/cboettig/duckdbfs,

https://cboettig.github.io/duckdbfs/

BugReports https://github.com/cboettig/duckdbfs/issues

Imports DBI, dbplyr, dplyr, duckdb (>= 0.9.2), fs, glue

Suggests curl, sf, jsonlite, spelling, minioclient, testthat (>=
3.0.0)

Config/testthat/edition 3

Language en-US

Repository https://cboettig.r-universe.dev

RemoteUrl https://github.com/cboettig/duckdbfs

RemoteRef HEAD

RemoteSha 95206cc8b77234f8f8f5e6b65d507bf2a7419d1c

Contents
as_dataset . 2
as_view . 2

1

https://github.com/cboettig/duckdbfs
https://cboettig.github.io/duckdbfs/
https://github.com/cboettig/duckdbfs/issues

2 as_view

cached_connection . 3
close_connection . 4
duckdb_s3_config . 5
load_spatial . 6
open_dataset . 7
spatial_join . 9
st_read_meta . 10
to_sf . 11
write_dataset . 12

Index 14

as_dataset as_dataset

Description

Push a local (in-memory) dataset into a the duckdb database as a table. This enables it to share the
connection source with other data. This is equivalent to the behavior of copy=TRUE on many (but
not all) of the two-table verbs in dplyr.

Usage

as_dataset(df, conn = cached_connection())

Arguments

df a local data frame. Otherwise will be passed back without side effects

conn A connection to a database.

Value

a remote dplyr::tbl connection to the table.

as_view as_view

Description

Create a View of the current query. This can be an effective way to allow a query chain to remain
lazy

Usage

as_view(x, tblname = tmp_tbl_name(), conn = cached_connection())

cached_connection 3

Arguments

x a duckdb spatial dataset

tblname The name of the table to create in the database.

conn A connection to a database.

Examples

path <- system.file("extdata/spatial-test.csv", package="duckdbfs")
df <- open_dataset(path)
library(dplyr)

df |> filter(latitude > 5) |> as_view()

cached_connection create a cachable duckdb connection

Description

This function is primarily intended for internal use by other duckdbfs functions. However, it can
be called directly by the user whenever it is desirable to have direct access to the connection object.

Usage

cached_connection(
dbdir = ":memory:",
read_only = FALSE,
bigint = "numeric",
config = list(temp_directory = tempfile())

)

Arguments

dbdir Location for database files. Should be a path to an existing directory in the file
system. With the default (or ""), all data is kept in RAM.

read_only Set to TRUE for read-only operation. For file-based databases, this is only applied
when the database file is opened for the first time. Subsequent connections (via
the same drv object or a drv object pointing to the same path) will silently
ignore this flag.

bigint How 64-bit integers should be returned. There are two options: "numeric"
and "integer64". If "numeric" is selected, bigint integers will be treated as
double/numeric. If "integer64" is selected, bigint integers will be set to bit64
encoding.

config Named list with DuckDB configuration flags, see https://duckdb.org/docs/
configuration/overview#configuration-reference for the possible op-
tions. These flags are only applied when the database object is instantiated.
Subsequent connections will silently ignore these flags.

https://duckdb.org/docs/configuration/overview#configuration-reference
https://duckdb.org/docs/configuration/overview#configuration-reference

4 close_connection

Details

When first called (by a user or internal function), this function both creates a duckdb connection
and places that connection into a cache (duckdbfs_conn option). On subsequent calls, this function
returns the cached connection, rather than recreating a fresh connection.

This frees the user from the responsibility of managing a connection object, because functions
needing access to the connection can use this to create or access the existing connection. At the
close of the global environment, this function’s finalizer should gracefully shutdown the connection
before removing the cache.

By default, this function creates an in-memory connection. When reading from on-disk or remote
files (parquet or csv), this option can still effectively support most operations on much-larger-than-
RAM data. However, some operations require additional working space, so by default we set a
temporary storage location in configuration as well.

Value

a duckdb::duckdb() connection object

Examples

con <- cached_connection()
close_connection(con)

close_connection close connection

Description

close connection

Usage

close_connection(conn = cached_connection())

Arguments

conn a duckdb connection (leave blank) Closes the invisible cached connection to
duckdb

Details

Shuts down connection before gc removes it. Then clear cached reference to avoid using a stale
connection This avoids complaint about connection being garbage collected.

Value

returns nothing.

duckdb_s3_config 5

Examples

close_connection()

duckdb_s3_config Configure S3 settings for database connection

Description

This function is used to configure S3 settings for a database connection. It allows you to set var-
ious S3-related parameters such as access key, secret access key, endpoint, region, session token,
uploader settings, URL compatibility mode, URL style, and SSL usage.

Usage

duckdb_s3_config(
conn = cached_connection(),
s3_access_key_id = NULL,
s3_secret_access_key = NULL,
s3_endpoint = NULL,
s3_region = NULL,
s3_session_token = NULL,
s3_uploader_max_filesize = NULL,
s3_uploader_max_parts_per_file = NULL,
s3_uploader_thread_limit = NULL,
s3_url_compatibility_mode = NULL,
s3_url_style = NULL,
s3_use_ssl = NULL,
anonymous = NULL

)

Arguments

conn A database connection object created using the cache_connection function
(default: cache_connection()).

s3_access_key_id

The S3 access key ID (default: NULL).
s3_secret_access_key

The S3 secret access key (default: NULL).

s3_endpoint The S3 endpoint (default: NULL).

s3_region The S3 region (default: NULL).
s3_session_token

The S3 session token (default: NULL).
s3_uploader_max_filesize

The maximum filesize for S3 uploader (between 50GB and 5TB, default 800GB).

6 load_spatial

s3_uploader_max_parts_per_file

The maximum number of parts per file for S3 uploader (between 1 and 10000,
default 10000).

s3_uploader_thread_limit

The thread limit for S3 uploader (default: 50).

s3_url_compatibility_mode

Disable Globs and Query Parameters on S3 URLs (default: 0, allows globs/queries).

s3_url_style The style of S3 URLs to use. Default is "vhost" unless s3_endpoint is set, which
makes default "path" (i.e. MINIO systems).

s3_use_ssl Enable or disable SSL for S3 connections (default: 1 (TRUE)).

anonymous request anonymous access (sets s3_access_key_id and s3_secret_access_key
to "", allowing anonymous access to public buckets).

Details

see https://duckdb.org/docs/sql/configuration.html

Value

Returns silently (NULL) if successful.

Examples

Configure S3 settings
duckdb_s3_config(

s3_access_key_id = "YOUR_ACCESS_KEY_ID",
s3_secret_access_key = "YOUR_SECRET_ACCESS_KEY",
s3_endpoint = "YOUR_S3_ENDPOINT",
s3_region = "YOUR_S3_REGION",
s3_uploader_max_filesize = "800GB",
s3_uploader_max_parts_per_file = 100,
s3_uploader_thread_limit = 8,
s3_url_compatibility_mode = FALSE,
s3_url_style = "vhost",
s3_use_ssl = TRUE,
anonymous = TRUE)

load_spatial load the duckdb geospatial data plugin

Description

load the duckdb geospatial data plugin

https://duckdb.org/docs/sql/configuration.html

open_dataset 7

Usage

load_spatial(
conn = cached_connection(),
nightly = getOption("duckdbfs_use_nightly", FALSE)

)

Arguments

conn A database connection object created using the cache_connection function
(default: cache_connection()).

nightly should we use the nightly version or not? default FALSE, configurable as
duckdbfs_use_nightly option.

Value

loads the extension and returns status invisibly.

References

https://duckdb.org/docs/extensions/spatial.html

open_dataset Open a dataset from a variety of sources

Description

This function opens a dataset from a variety of sources, including Parquet, CSV, etc, using either
local file system paths, URLs, or S3 bucket URI notation.

Usage

open_dataset(
sources,
schema = NULL,
hive_style = TRUE,
unify_schemas = FALSE,
format = c("parquet", "csv", "tsv", "sf"),
conn = cached_connection(),
tblname = tmp_tbl_name(),
mode = "VIEW",
filename = FALSE,
recursive = TRUE,
...

)

https://duckdb.org/docs/extensions/spatial.html

8 open_dataset

Arguments

sources A character vector of paths to the dataset files.

schema The schema for the dataset. If NULL, the schema will be inferred from the
dataset files.

hive_style A logical value indicating whether to the dataset uses Hive-style partitioning.

unify_schemas A logical value indicating whether to unify the schemas of the dataset files
(union_by_name). If TRUE, will execute a UNION by column name across
all files (NOTE: this can add considerably to the initial execution time)

format The format of the dataset files. One of "parquet", "csv", "tsv", or "sf"
(spatial vector files supported by the sf package / GDAL). if no argument is
provided, the function will try to guess the type based on minimal heuristics.

conn A connection to a database.

tblname The name of the table to create in the database.

mode The mode to create the table in. One of "VIEW" or "TABLE". Creating a VIEW,
the default, will execute more quickly because it does not create a local copy
of the dataset. TABLE will create a local copy in duckdb’s native format, down-
loading the full dataset if necessary. When using TABLE mode with large data,
please be sure to use a conn connections with disk-based storage, e.g. by calling
cached_connection(), e.g. cached_connection("storage_path"), other-
wise the full data must fit into RAM. Using TABLE assumes familiarity with R’s
DBI-based interface.

filename A logical value indicating whether to include the filename in the table name.

recursive should we assume recursive path? default TRUE. Set to FALSE if trying to open
a single, un-partitioned file.

... optional additional arguments passed to duckdb_s3_config(). Note these ap-
ply after those set by the URI notation and thus may be used to override or
provide settings not supported in that format.

Value

A lazy dplyr::tbl object representing the opened dataset backed by a duckdb SQL connec-
tion. Most dplyr (and some tidyr) verbs can be used directly on this object, as they can be
translated into SQL commands automatically via dbplyr. Generic R commands require using
dplyr::collect() on the table, which forces evaluation and reading the resulting data into mem-
ory.

Examples

A remote, hive-partitioned Parquet dataset
base <- paste0("https://github.com/duckdb/duckdb/raw/main/",

"data/parquet-testing/hive-partitioning/union_by_name/")
f1 <- paste0(base, "x=1/f1.parquet")
f2 <- paste0(base, "x=1/f2.parquet")
f3 <- paste0(base, "x=2/f2.parquet")

open_dataset(c(f1,f2,f3), unify_schemas = TRUE)

spatial_join 9

Access an S3 database specifying an independently-hosted (MINIO) endpoint
efi <- open_dataset("s3://neon4cast-scores/parquet/aquatics",

s3_access_key_id="",
s3_endpoint="data.ecoforecast.org")

spatial_join spatial_join

Description

spatial_join

Usage

spatial_join(
x,
y,
by = c("st_intersects", "st_within", "st_dwithin", "st_touches", "st_contains",
"st_containsproperly", "st_covers", "st_overlaps", "st_crosses", "st_equals",
"st_disjoint"),

args = "",
join = "left",
tblname = tmp_tbl_name(),
conn = cached_connection()

)

Arguments

x a duckdb table with a spatial geometry column called "geom"

y a duckdb table with a spatial geometry column called "geom"

by A spatial join function, see details.

args additional arguments to join function (e.g. distance for st_dwithin)

join JOIN type (left, right, inner, full)

tblname name for the temporary view

conn the duckdb connection (imputed by duckdbfs by default, must be shared across
both tables)

Details

Possible spatial joins include:

Function Description
st_intersects Geometry A intersects with geometry B
st_disjoint The complement of intersects

https://postgis.net/workshops/postgis-intro/spatial_relationships.html

10 st_read_meta

st_within Geometry A is within geometry B (complement of contains)
st_dwithin Geometries are within a specified distance, expressed in the same units as the coordinate reference system.
st_touches Two polygons touch if the that have at least one point in common, even if their interiors do not touch.
st_contains Geometry A entirely contains to geometry B. (complement of within)
st_containsproperly stricter version of st_contains (boundary counts as external)
st_covers geometry B is inside or on boundary of A. (A polygon covers a point on its boundary but does not contain it.)
st_overlaps geometry A intersects but does not completely contain geometry B
st_equals geometry A is equal to geometry B
st_crosses Lines or points in geometry A cross geometry B.

All though SQL is not case sensitive, this function expects only lower case names for "by" functions.

Value

a (lazy) view of the resulting table. Users can continue to operate on using dplyr operations and call
to_st() to collect this as an sf object.

Examples

note we can read in remote data in a variety of vector formats:
countries <-
paste0("/vsicurl/",

"https://github.com/cboettig/duckdbfs/",
"raw/spatial-read/inst/extdata/world.gpkg") |>

open_dataset(format = "sf")

cities <-
paste0("/vsicurl/https://github.com/cboettig/duckdbfs/raw/",

"spatial-read/inst/extdata/metro.fgb") |>
open_dataset(format = "sf")

countries |>
dplyr::filter(iso_a3 == "AUS") |>
spatial_join(cities)

st_read_meta read spatial metadata

Description

At this time, reads a subset of spatial metadata. This is similar to what is reported by ogrinfo
-json

to_sf 11

Usage

st_read_meta(
path,
layer = 1L,
tblname = tbl_name(path),
conn = cached_connection(),
...

)

Arguments

path URL or path to spatial data file

layer layer number to read metadata for, defaults to first layer.

tblname metadata will be stored as a view with this name, by default this is based on the
name of the file.

conn A connection to a database.

... optional additional arguments passed to duckdb_s3_config(). Note these ap-
ply after those set by the URI notation and thus may be used to override or
provide settings not supported in that format.

Value

A lazy dplyr::tbl object containing core spatial metadata such as projection information.

Examples

st_read_meta("https://github.com/duckdb/duckdb_spatial/raw/main/test/data/amsterdam_roads.fgb")

to_sf Convert output to sf object

Description

Convert output to sf object

Usage

to_sf(x, crs = NA, conn = cached_connection())

12 write_dataset

Arguments

x a remote duckdb tbl (from open_dataset) or dplyr-pipeline thereof.

crs The coordinate reference system, any format understood by sf::st_crs.

conn the connection object from the tbl. Takes a duckdb table (from open_dataset)
or a dataset or dplyr pipline and returns an sf object. Important: the table must
have a geometry column, which you will almost always have to create first.
Note: to_sf() triggers collection into R. This function is suitable to use at the
end of a dplyr pipeline that will subset the data. Using this function on a large
dataset without filtering first may exceed available memory.

Value

an sf class object (in memory).

Examples

library(dplyr)
csv_file <- system.file("extdata/spatial-test.csv", package="duckdbfs")

Note that we almost always must first create a `geometry` column, e.g.
from lat/long columns using the `st_point` method.
sf <-

open_dataset(csv_file, format = "csv") |>
mutate(geom = ST_Point(longitude, latitude)) |>
to_sf()

We can use the full space of spatial operations, including spatial
and normal dplyr filters. All operations are translated into a
spatial SQL query by `to_sf`:
open_dataset(csv_file, format = "csv") |>

mutate(geom = ST_Point(longitude, latitude)) |>
mutate(dist = ST_Distance(geom, ST_Point(0,0))) |>
filter(site %in% c("a", "b", "e")) |>
to_sf()

write_dataset write_dataset

Description

write_dataset

write_dataset 13

Usage

write_dataset(
dataset,
path,
conn = cached_connection(),
format = c("parquet", "csv"),
partitioning = dplyr::group_vars(dataset),
overwrite = TRUE,
...

)

Arguments

dataset a remote tbl object from open_dataset, or an in-memory data.frame.

path a local file path or S3 path with write credentials

conn duckdbfs database connection

format export format

partitioning names of columns to use as partition variables

overwrite allow overwriting of existing files?

... additional arguments to duckdb_s3_config()

Value

Returns the path, invisibly.

Examples

write_dataset(mtcars, tempfile())

write_dataset(mtcars, tempdir())

Index

as_dataset, 2
as_view, 2

cached_connection, 3
cached_connection(), 8
close_connection, 4

dplyr::collect(), 8
duckdb::duckdb(), 4
duckdb_s3_config, 5
duckdb_s3_config(), 8, 11, 13

load_spatial, 6

open_dataset, 7

spatial_join, 9
st_read_meta, 10

to_sf, 11

write_dataset, 12

14

	as_dataset
	as_view
	cached_connection
	close_connection
	duckdb_s3_config
	load_spatial
	open_dataset
	spatial_join
	st_read_meta
	to_sf
	write_dataset
	Index

